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Abstract

This paper introduces the package gmnl in R for estimation of multinomial logit models
with unobserved heterogeneity across individuals for cross-sectional and panel (longitu-
dinal) data. Unobserved heterogeneity is modeled by allowing the parameters to vary
randomly over individuals according to a continuous, discrete, or mixture distribution,
which must be chosen a priori by the researcher. In particular, the models supported
by gmnl are the multinomial or conditional logit, the mixed multinomial logit, the scale
heterogeneity multinomial logit, the generalized multinomial logit, the latent class logit,
and the mixed-mixed multinomial logit. These models are estimated using either the
Maximum Likelihood Estimator or the Maximum Simulated Likelihood Estimator. This
article describes and illustrates with real databases all functionalities of gmnl, including
the derivation of individual conditional estimates of both the random parameters and
willingness-to-pay measures.

Keywords: latent class, mixed multinomial logit, random parameters, preference heterogeneity,
R.

1. Introduction

Modeling individual choices has been a very important avenue of research in diverse fields
such as marketing, transportation, political science, and environmental, health, and urban
economics. In all these areas the most widely used method to model choice among mutually
exclusive alternatives has been the Conditional or Multinomial Logit model (MNL) (McFad-
den 1974), which belongs to the family of Random Utility Maximization (RUM) models. The
main advantage of the MNL model has been its simplicity in terms of both estimation and
interpretation of the resulting choice probabilities and elasticities. On the one hand, the MNL
has a closed-form choice probability and a likelihood function that is globally concave. MNL
estimation is thus straightforward using the Maximum Likelihood Estimator (MLE). On the
other hand, it has been recognized that MNL not only imposes constant competition across
alternatives – as a consequence of the independence of irrelevant alternatives (IIA) property
– but also lacks the flexibility to allow for individual-specific preferences.

With the advent of more powerful computers and the improvement of simulation-aided infer-
ence in the last decades, researchers are no longer constrained to use models with closed-form
solutions that may lead to unrealistic behavioral specifications. In fact, much of recent work
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focuses on extending MNL to allow for random-parameter models that accommodate unob-
served preference heterogeneity.

The most popular MNL extension is the Mixed Logit Model (MIXL). MIXL allows parameters
to vary randomly over individuals by assuming some continuous heterogeneity distribution a
priori while keeping the MNL assumption that the error term is independent and identically
distributed (i.i.d) extreme value type 1 (McFadden and Train 2000; Train 2009; Hensher and
Greene 2003). MIXL is a very flexible model that can approximate any RUM model, and it
does not exhibit the IIA property encountered in MNL. Furthermore, using the parametric
heterogeneity distribution that describes how preferences vary in the population it is possible
to derive conditional estimates of the parameters at the individual-level.

Latent Class (LC) discrete choice models offer an alternative to MIXL by replacing the contin-
uous distribution assumption with a discrete distribution in which preference heterogeneity is
captured by membership in distinct classes or segments (Boxall and Adamowicz 2002; Greene
and Hensher 2003; Shen 2009). The standard LC specification is useful if the assumption of
preference homogeneity holds within segments. In effect, all individuals in a given class have
the same parameters (fixed parameters within a class), but the parameters vary across classes
(heterogeneity across classes).

Bujosa, Riera, and Hicks (2010), and more recently Greene and Hensher (2013), have extended
the LC model to allow for unobserved heterogeneity both within and across segments. The
cross-group variation is modeled with the LC model, whereas the within-group variation is
modeled as a continuous variation. An important characteristic of this model is that it nests
both the MIXL and LC model in a double mixture specification. This model is also known
as Mixed-Mixed Logit (MM-MNL) (Keane and Wasi 2013).

Other researchers have focused on MNL extensions that allow for a more flexible representa-
tion of heteroskedasticity. For example, Fiebig, Keane, Louviere, and Wasi (2010) proposed
two new models, namely the Scale Heterogeneity (S-MNL) model and the Generalized Multi-
nomial Logit (G-MNL) model. S-MNL extends the MNL by letting the scale of errors vary
across individuals (via a parametric specification of heteroskedasticity), whereas the G-MNL
nests the S-MNL, MIXL, and MNL models. For a discussion of confounding effects between
scale and preference heterogeneity, see Hess and Rose (2012) and Hess and Stathopoulos
(2013).

There exist different packages in R (R Core Team 2015) in order to estimate models with
multinomial responses. Some packages that allow the estimation of Multinomial Logit model
with fixed parameters are mlogit (Croissant 2012), RSGHB (Dumont, Keller, and Carpenter
2014), mnlogit (Hasan, Zhiyu, and Mahani 2015), the function multinom function from nnet
package (Venables and Ripley 2002), VGAM (Yee 2010), and package bayesm (Rossi. 2012).
The Multinomial Probit (MNP) model is fitted in MNP (Imai and Dyk 2005) and mlogit
package. Models with random parameters are supported by mlogit and RSGHB. In terms
of models with latent classes bayesm, RSGHB, flexmix (Leisch 2004), and poLCA (Linzer
and Lewis 2011) offer alternative estimation procedures. Among all these packages, mlogit
is probably the most user-friendly R package for the estimation of models with multinomial
responses. Table 1 presents a more complete overview of the models supported by each
package and the estimation procedure used to estimate the parameters.

The gmnl package (Sarrias and Daziano 2015) is intended to consolidate in a single R package
the whole range of discrete choice models with random parameters for the use of researchers
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Model Package Estimation Procedure

MNL

mlogit Maximum likelihood
mnlogit Maximum likelihood
RSGHB Beyesian inference

gmnl Maximum likelihood
multinom function (nnet) Maximum likelihood

VGAM Maximum likelihood
bayesm Bayesian inference

MNP
mlogit Maximum simulated likelihood
MNP Markov chain monte carlo

MIXL
mlogit Maximum simulated likelihood
gmnl Maximum simulated likelihood

RSGHB Beyesian inference

G-MNL gmnl Maximum simulated likelihood

S-MNL gmnl Maximum simulated likelihood

LC-MNL

bayesm Bayesian inference
RSGHB Bayesian inference
flexmix Expectation-Maximization
poLCA Expectation-Maximization
gmnl Maximum likelihood

MM-MNL gmnl Maximum simulated likelihood

Table 1: Packages available in R for models with multinomial response.

and practitioners. It shares similar functionalities with mlogit and mnlogit in terms of the
formula interface. Furthermore, since gmnl is able to estimate G-MNL models, it also allows
the user to estimate models in willingness-to-pay space with a minimal extra reformulation.
Our package also provides the ability of constructing the conditional estimates for the individ-
ual parameters and willingness-to-pay. gmnl is available from the Comprehensive R Archive
Network (CRAN) at http://cran.r-project.org/package=gmnl.

The paper is organized as follows: Section 2 presents a brief overview of the models supported
by gmnl. Section 3 discusses the functionalities of the package. Section 4 concludes the paper.

http://cran.r-project.org/package=gmnl
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2. Models

2.1. Mixed and latent class logit models

MIXL generalizes the MNL model by allowing the preference or taste parameters to be differ-
ent for each individual (McFadden and Train 2000; Train 2009). MIXL is basically a random
parameter logit model with continuous heterogeneity distributions. The random utility of
person i for alternative j and for choice occasion t is:

Uijt = x>ijtβi + εijt i = 1, ..., N ; j = 1, ..., J, t = 1, ..., Ti, (1)

where xijt is a K × 1 vector of observed alternative attributes; εijt is the idiosyncratic error
term or taste shock, and is i.i.d. extreme value type 1; the parameter vector βi is unobserved
for each i and is assumed to vary in the population following the continuous density f(βi|θ),
where θ are the parameters of this distribution. This mixing distribution can in principle take
any shape. For example, when assuming that the parameters are distributed multivariate
normal, βi ∼ MVN(β,Σ), the vector βi can be re-written as:

βi = β + Lηi,

where ηi ∼ N(0, I), and L is the lower-triangular Cholesky factor of Σ such that LL> =
VAR(βi) = Σ. If the off-diagonal elements of L are zero, then the parameters are indepen-
dently normally distributed. Observed heterogeneity (deterministic taste variations) can also
be accommodated in the random parameters by including individual-specific covariates (see
for example Greene 2012). Specifically, the vector of random coefficients is:

βi = β + Πzi + Lηi, (2)

where zi is a set of M characteristics of individual i that influence the mean of the preference
parameters; and Π is a K ×M is a matrix of additional parameters.

Unlike the MIXL model, LC uses a discrete mixing distribution, where individual i belongs
to class q with probability wiq, i.e.,:

βi = βq with probability wiq for q = 1, ..., Q,

where
∑

q wiq = 1 and wiq > 0. The discrete mixing distribution (or class assignment prob-
ability) is unknown to the analyst. The most widely used formulation for wiq is the semi-
parametric Multinomial Logit format (Greene and Hensher 2003; Shen 2009):

wiq =
exp

(
h>i γq

)∑Q
q=1 exp

(
h>i γq

) ; q = 1, ..., Q, γ1 = 0,

where hi denotes a set of socio-economic characteristics that determine assignment to classes.
The parameters of the first class are normalized to zero for identification of the model. Note
that one could omit any socio-economic covariate as a determinant of the class assignment
probability. Under this scenario, the class probabilities simply become:
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wiq =
exp (γq)∑Q
q=1 exp (γq)

; q = 1, ..., Q, γ1 = 0,

where γq is a constant (Scarpa and Thiene 2005).

Let yijt = 1 if individual i chooses j on occasion t, and 0 otherwise. Then, the unconditional
probabilities of the sequence of choices by individual i for MIXL and LC are respectively given
by:

Pi(θ) =

∫ 
T∏
t

J∏
j

 exp
(
x>ijtβi

)
∑J

j=1 exp
(
x>ijtβi

)
yijt f(βi)dβi

Pi(θ) =

Q∑
q

wiq


T∏
t

J∏
j

 exp
(
x>ijtβq

)
∑J

j=1 exp
(
x>ijtβq

)
yijt .

Both MIXL and LC are widely used in practice to accommodate preference heterogeneity
across respondents. As discussed above, in the MIXL approach parameters are assumed to
vary across the population according to some prespecified statistical distribution in a way that
defines continuous segmentation of preferences. In the LC model a discrete number of separate
classes or segments, each with different fixed parameters, recover preference heterogeneity. In
addition to differentiation in terms of continuous versus discrete consumer segments, there
exist further differences between MIXL and LC. For example, compared with the MIXL ap-
proach, the LC model has the advantage of being “relatively simple, reasonably plausible and
statistically testable” (Shen 2009). In addition, because LC is a semiparametric specification
that depends only on the prespecified number of classes, it avoids misspecification problems
in the distribution of individual heterogeneity. In fact, the main disadvantage of MIXL is that
the researcher has to choose the distribution of the random parameters a priori. Nevertheless,
LC is less flexible than MIXL precisely because the parameters in each class are fixed. An-
other important difference between these two models is the estimation procedure. The MIXL
requires the use of the maximum simulated likelihood estimator – which can be very costly
in terms of computational time – but no simulation is required for LC.1 gmnl implements the
Maximum Likelihood Estimator for both LC and MIXL, using analytical expressions for the
appropriate gradient.

To take advantage of the benefits of both models, recent empirical papers have derived a
mixture of LC and MIXL. This double-mixture model is known as the ‘Mixed-Mixed’ Logit
model (MM-MNL) (Keane and Wasi 2013).2 Bujosa et al. (2010), and Greene and Hensher
(2013) developed this MM-MNL model by extending the LC model to allow for random
parameters within each class.

Consider the case where the heterogeneity distribution is generalized to a discrete mixture of

1For an empirical comparison between these two models, see for example Greene and Hensher (2003), Shen
(2009) and Hess, Ben-Akiva, Gopinath, and Walker (2011).

2Train (2008) refers to this model as ‘discrete mixture of continuous distributions’, whereas Greene and
Hensher (2013) label it ‘LC-MIXL’.
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multivariate normal distributions. In this case we have:

βi ∼ N(βq,Σq) with probability wiq for q = 1, ..., Q. (3)

The appeal of using a Gaussian mixture for the heterogeneity distribution is that any contin-
uous distribution can be approximated by a discrete mixture of normal distributions (Train
2008). Note that the MM-MNL with only one class is equivalent to the MIXL model. Fur-
thermore, if Σq → 0 for all q, the model in Equation 3 becomes a LC-MNL model (Bujosa
et al. 2010; Keane and Wasi 2013). Thus, MM-MNL nests both MIXL and LC.

The choice probabilities for the MM-MNL are given by:

Pi(θ) =

Q∑
q

wiq

∫ 
T∏
t

J∏
j

 exp
(
x>ijtβi

)
∑J

j=1 exp
(
x>ijtβi

)
yijt f(βi)dβi,

where f(βi) = N(βq,Σq). gmnl implements the maximum likelihood estimator for the MM-
MNL parameters with the Monte-Carlo approximation of this choice probability and the
analytical expression of the gradient.

2.2. Generalized Multinomial Logit model

Fiebig et al. (2010) proposed a general version of the MIXL model, which they called the
G-MNL model, where the parameters vary across individuals according to:

βi = σiβ + [γ + σi(1− γ)]Lηi, (4)

where σi is the individual-specific scale of the idiosyncratic error term, and γ is a scalar
parameter that controls how the variance of residual taste heterogeneity Lηi varies with
scale. To better understand this specification, it is useful to note that differing sub-models
arise when some structural parameters in the G-MNL model are constrained:

• G-MNL-I: If γ = 1, then βi = σiβ+Lηi. In this model, the residual taste heterogeneity
is independent of the scaling of β.

• G-MNL-II: If γ = 0, then βi = σi(β + Lηi). In this model, the residual taste hetero-
geneity is proportional to σi.

• S-MNL: If VAR(ηi) = 0, then βi = σiβ. As pointed out by Fiebig et al. (2010), this
model is observationally equivalent to the particular type of heterogeneity in which the
parameters increase or decrease proportionally across individuals by the scaling factor
σi. S-MNL provides a more parsimonious representation of continuous heterogeneity
than MIXL, because βσi is a simpler object than β + Lηi (Fiebig et al. 2010).

• MIXL: βi = β + Lηi, if σi = 1

• MNL: βi = β, if σi = 1 and VAR(ηi) = 0
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Fiebig et al. (2010) note that some restrictions need to be considered to estimate the G-MNL
model. First, the domain of σi should be the positive real line. A positive scale parameter is
ensured by assuming that σi is distributed log-normal with standard deviation τ and mean σ̄
Fiebig et al. (2010):

σi = exp(σ̄ + τυi),

where υ ∼ N(0, 1). Fiebig et al. (2010) also note that when τ is too large, numerical problems
arise for extreme draws of υi. To avoid this numerical issue, the authors suggest to use a
truncated normal distribution for υi with truncation at ±2, so that υ ∼ TN [−2,+2]. Greene
and Hensher (2010) found that constraining υi at −1.96 and +1.96 maintains the smoothness
of the estimator. Specifically, the authors used υir = Φ−1(0.025 + 0.95uir), where uir is a
draw from the standard uniform distribution. gmnl allows the user to choose between these
two ways of drawing from υi, using the argument typeR (see Section 3.1).

Note that the parameters σ̄, τ , and β are not separately identified. Fiebig et al. (2010) suggest
that one can normalize the mean σ̄ by setting:

σ̄ = − log

[
1

N

N∑
i=1

exp (τυi)

]
.

Another important issue in G-MNL is the domain of γ. Initially, Fiebig et al. (2010) imposed
γ ∈ [0, 1]. To constrain γ in this interval, the authors used the logistic transformation:

γ =
exp(γ∗)

1 + exp(γ∗)
,

and estimated γ∗. However, Keane and Wasi (2013) pointed out that both γ < 0 and γ > 1
still have meaningful behavioral interpretations. Thus, these authors estimate γ directly.
gmnl allows to estimate γ using both procedures.

Finally, one can allow the mean of the scale to differ across individuals by including individual-
specific characteristics. In this case the scale parameter can be written as:

σi = exp(σ̄ + δsi + τυi),

where si is a vector of attributes of individual i.

In terms of computation, all models, except for the LC and the MNL model, are estimated in
gmnl using the maximum simulated likelihood estimator (MSLE). For a complete derivation of
the asymptotic properties of the MSLE and a more comprehensive review of how to implement
this estimator, see Train (2009), Lee (1992), Gourieroux and Monfort (1997) or Hajivassiliou
and Ruud (1986).

3. The gmnl package

3.1. A general overview of gmnl

All the models are estimated using the function gmnl, which has the following arguments.
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gmnl(formula, data, subset, weights, na.action,

model = c("mnl", "mixl", "smnl", "gmnl", "lc", "mm"),

start = NULL, ranp = NULL, R = 40, Q = 2, haltons = NA,

mvar = NULL, seed = 12345, correlation = FALSE,

bound.err = 2, panel = FALSE,

hgamma = c("direct", "indirect"),

reflevel = NULL, init.tau = 0.1,

init.gamma = 0.1, notscale = NULL,

print.init = FALSE, gradient = TRUE,

typeR = TRUE, ...)

A brief explanation of the main arguments is given below:

• formula: This is a symbolic description of the model to be estimated. The special
formulae for Multinomial Logit models are given in Section 3.3.

• data: The data used for estimation, which must be of class mlogit.data. This is
further explained in Section 3.2.

• model: A character string indicating which model will be estimated. The options are
given in Table 2.

Options for "model" Model

"mnl" Multinomial Logit Model
"mixl" Mixed Logit Model
"smnl" Scaled Multinomial Logit Model
"gmnl" Generalized Multinomial Logit Model
"lc" Latent Class Multinomial Logit Model
"mm" Mixed-Mixed Multinomial Logit Model

Table 2: Models supported by gmnl.

• start: A vector of starting values provided by the user.

• ranp: This is a named vector whose names are the random parameters and values
the continuous distributions. This argument is valid only if the MIXL, G-MNL or
MM-MIXL model is estimated. The distributions supported by gmnl are presented in
Table 3.

It is worth mentioning that given how the random parameters of the G-MNL model are
constructed (see Equation 4), the distributions allowed when model = "gmnl" are the
normal, uniform, and triangular. Similarly, when the model is estimated with correlated
random parameters, only the normal distribution and its transformations —log-normal
and truncated normal— are allowed.

• R: The number of draws used to simulate the probability if ranp is not NULL.

• Q: The number of classes for LC-MNL or MM-MNL model.
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Shorthands Distributions

"n" Normal distribution
"ln" Log-normal distribution
"cn" Truncated (at zero) normal distribution
"t" Triangular distribution
"u" Uniform distribution
"sb" Johnson Sb distribution

Table 3: Continuous distributions supported by gmnl.

• haltons: This argument is relevant if ranp is not NULL. If haltons = NULL, pseudo-
random draws are used instead of Halton sequences. If haltons = NA, the first K primes
are used to generate the Halton draws, where K is the number of random parameters,
and 15 of the initial sequence of elements are dropped. Otherwise, haltons should be a
list with elements prime and drop. For a further explanation of Halton draws see Train
(2009).

• mvar: This argument is only valid if the model has observed heterogeneity in the mean
of the random parameters. A more detailed discussion of this argument is presented in
Section 3.5.

• seed: This is the seed for the random number generator if haltons = NULL.

• correlation: This argument is valid if ranp is not NULL. If TRUE, the correlation across
random parameters is taken into account.

• bound.err: This argument is only relevant if the S-MNL or G-MNL model is estimated.
It indicates at which values the draws for the scale parameter σi are truncated. By
default bound.err = 2. Therefore, a truncated normal distribution with truncation at
±2 for υi is used.

• panel: If TRUE a panel (longitudinal) data model is estimated.

• hgamma: A string character that indicates how to estimate the parameter γ in Equa-
tion 4. If hgamma = "direct", then γ is estimated directly. If hgamma = "indirect",
then γ∗ is estimated, where γ = exp(γ∗)/(1 + exp(γ∗)). See Section 2.2.

• init.tau: Initial value for the τ parameter in Equation 4. The default is 0.1.

• init.gamma: Initial value for the γ parameter in Equation 4. The default is 0.1.

• notscale: This argument is relevant if the model being estimated is either S-MNL or
G-MNL. It is a vector indicating which variables should not be scaled. See Section 3.4
for an illustration.

• print.init: If TRUE, then the initial values for the optimization procedure are dis-
played.

• gradient: If TRUE, then the analytical gradient is used for the optimization procedure.
Otherwise, numerical approximation for the gradient is used.



10 gmnl Package in R

• typeR: If TRUE, truncated normal draws are used for the scale parameter. In this case,
the function rtruncnorm of truncnorm (Trautmann, Steuer, Mersmann, and Bornkamp
2014) is used. If typeR = FALSE the procedure suggested by Greene and Hensher (2010)
is used. See Section 2.2.

• ...: Further arguments passed to maxLik function of maxLik package (Henningsen and
Toomet 2011).

3.2. Format of data

The function mlogit.data from mlogit is very useful to handle multinomial data formats.
gmnl thus uses the same class of data for estimation. If the user forgets to set the data in the
mlogit.data format, gmnl will give an error message and the estimation process will stop.

For illustration purposes, we use the Travel Mode data from the AER package (Kleiber
and Zeileis 2008), which contains four transportation modes (air, train, bus and car),
four alternative-specific variables (wait, vcost, travel, gcost), and two individual-specific
variables (income, size).

data("TravelMode", package = "AER")

head(TravelMode)

## individual mode choice wait vcost travel gcost income size

## 1 1 air no 69 59 100 70 35 1

## 2 1 train no 34 31 372 71 35 1

## 3 1 bus no 35 25 417 70 35 1

## 4 1 car yes 0 10 180 30 35 1

## 5 2 air no 64 58 68 68 30 2

## 6 2 train no 44 31 354 84 30 2

This data base is in “long” format and can be transformed into the structure needed by gmnl

using the mlogit.data in the following way:

library("mlogit")

TM <- mlogit.data(TravelMode, choice = "choice", shape = "long",

alt.levels = c("air", "train", "bus", "car"))

The argument choice indicates the choice made by the individuals; shape specifies the original
format of the data; and alt.levels is a character vector that contains the name of the
alternatives. We show how to transform other kinds of data in the examples below. For a
more complete treatment of the data using mlogit.data function see Croissant (2012).

3.3. Formula interface

The specification of Multinomial Logit models using gmnl is similar to that of mlogit and
mnlogit. In particular, we use the R package Formula (Zeileis and Croissant 2010), which is
able to handle multi-part formulae.
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Consider the TravelMode data and suppose that we want to estimate a Multinomial Logit
model where the variables wait and vcost are alternative-specific variables with a generic
coefficient β; income is an individual-specific variable with an alternative specific coefficient
γj ; and the variables travel and gcost are alternative-specific variables with an alternative
specific coefficient δj . This is done using the following 3-part formula:

f1 <- choice ~ wait + vcost | income | travel + gcost

By default, the alternative-specific constants (ASC) for each alternative are included. They
can be omitted by adding +0 or -1 in the second part of the formula. For example:

f2 <- choice ~ wait + vcost | income + 0 | travel + gcost

f2 <- choice ~ wait + vcost | income - 1 | travel + gcost

Some parts may be omitted when there is no ambiguity. For instance, a model with only
individual specific variables can be specified as follows:

f3 <- choice ~ 0 | income + size | 0

f3 <- choice ~ 0 | income + size | 1

Similarly, a Conditional Logit model, that is, a model with alternative-specific variables with
a generic coefficient β, can be specified using either of the following formula objects:

f4 <- choice ~ wait + vcost | 0

f4 <- choice ~ wait + vcost | 0 | 0

f4 <- choice ~ wait + vcost | -1 | 0

For other models, such as the MIXL, S-MNL, LC-MNL and MM-MNL model, we require
to use the fourth and fifth part of the formula. As explained in Section 2.1, gmnl allows
incorporating observed heterogeneity in the mean of the random parameters. This can be
achieved by including individual-specific characteristics (income and size) in the fourth part
of the formula:

f5 <- choice ~ wait + vcost | 0 | 0 | income + size - 1

and then use the mvar argument to indicate how these two variables modify the mean of the
random parameters. For a more complete example see Section 3.5.

The fifth part of the formula is reserved for either models with heterogeneity in the scale
parameter or models with latent classes. For example, an S-MNL or G-MNL model where the
scale varies across individuals by individual-specific characteristics can be specified as follows:

f6 <- choice ~ wait + vcost | 1 | 0 | 0 | income + size - 1

The same formulation can be used if a model with latent classes is estimated and both income

and size determine the class assignment.
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3.4. Estimating S-MNL models

In this example, we estimate an S-MNL model using the TravelMode data where the ASCs
are fixed and not scaled. Fiebig et al. (2010) found that in a model where all attributes are
scaled – including the ASCs – the estimates often show a explosive behavior and the model
actually produces a worse fit. The basic syntax for estimation is the following:

library("gmnl")

smnl.nh <- gmnl(choice ~ wait + vcost + travel + gcost| 1,

data = TM,

model = "smnl",

R = 30,

notscale = c(1, 1, 1, rep(0, 4)))

##

## The following variables are not scaled:

## [1] "train:(intercept)" "bus:(intercept)" "car:(intercept)"

## Estimating SMNL model

The component | 1 in the formula means that the model is fitted using ASCs for the J − 1
alternatives. The main argument in the model is model = "smnl", which indicates to the
function that the user wants to estimate the S-MNL model (without random parameters).
R = 30 indicates that 30 draws are used to simulate the probabilities. Another important
argument in this example is notscale. This is a vector that indicates which variables will
not be scaled (1 = not scaled and 0 = scaled). Since the ASCs are always the first variables
entering in the model (if they are specified using | 1 in the second part of formula) and only
J−1 = 3 ASCs are created, notscale = c(1, 1, 1, rep(0, 4)) implies that the constants
will not be scaled.

summary(smnl.nh)

##

## Model estimated on: Thu Jun 04 13:14:54 2015

##

## Call:

## gmnl(formula = choice ~ wait + vcost + travel + gcost | 1, data = TM,

## model = "smnl", R = 30, notscale = c(1, 1, 1, rep(0, 4)),

## method = "bfgs")

##

## Frequencies of categories:

##

## air train bus car

## 0.276 0.300 0.143 0.281

##

## The estimation took: 0h:0m:4s

##

## Coefficients:
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## Estimate Std. Error z-value Pr(>|z|)

## train:(intercept) -1.18012 0.58094 -2.03 0.04222 *

## bus:(intercept) -1.92725 0.70229 -2.74 0.00607 **

## car:(intercept) -7.07657 1.30568 -5.42 6.0e-08 ***

## wait -0.13366 0.02070 -6.46 1.1e-10 ***

## vcost -0.11741 0.03166 -3.71 0.00021 ***

## travel -0.01721 0.00391 -4.40 1.1e-05 ***

## gcost 0.09229 0.02591 3.56 0.00037 ***

## tau 0.43016 0.13256 3.24 0.00118 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -180

## Number of observations: 210

## Number of iterations: 63

## Exit of MLE: successful convergence

## Simulation based on 30 draws

The results report the point estimates for each variable and τ , which represents the standard
deviation of σi. The output also gives useful estimation information. The model is estimated
using the BFGS procedure. Other optimization procedures such as the BHHH and Newton
Raphson (NR) can be called using the argument method passed to the maxLik function.3

Another important point is that the number of observations reported by gmnl corresponds to
N/J if cross-sectional data is used, or N × T/J if panel data (repeated choice situations) is
used. Finally, it is always important to check all the details in the estimation output. In our
example, the output informs us that the convergence was achieved successfully.

In the next example, we allow the scale to differ across individuals according to their income.
Basically, we assume that:

σi = exp (σ̄ + δincomeincomei + τυi) .

The syntax is very similar to our previous example, with minor changes in the formula

argument:

smnl.het <- gmnl(choice ~ wait + vcost + travel + gcost| 1 |

0 | 0 | income - 1,

data = TM,

model = "smnl",

R = 30,

notscale = c(1, 1, 1, 0, 0, 0, 0))

##

## The following variables are not scaled:

3For more information about the arguments of this function type help(maxLik).
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## [1] "train:(intercept)" "bus:(intercept)" "car:(intercept)"

## Estimating SMNL model

The fifth part of the formula is reserved for individual-specific variables that affect scale. In
this example, we specify that the variable income and no constant are included in σi.

summary(smnl.het)

##

## Model estimated on: Thu Jun 04 13:15:00 2015

##

## Call:

## gmnl(formula = choice ~ wait + vcost + travel + gcost | 1 | 0 |

## 0 | income - 1, data = TM, model = "smnl", R = 30, notscale = c(1,

## 1, 1, 0, 0, 0, 0), method = "bfgs")

##

## Frequencies of categories:

##

## air train bus car

## 0.276 0.300 0.143 0.281

##

## The estimation took: 0h:0m:5s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## train:(intercept) -0.84832 0.61257 -1.38 0.16610

## bus:(intercept) -1.50344 0.74401 -2.02 0.04331 *

## car:(intercept) -6.69212 1.32771 -5.04 4.6e-07 ***

## wait -0.11156 0.02048 -5.45 5.1e-08 ***

## vcost -0.09060 0.02824 -3.21 0.00133 **

## travel -0.01428 0.00344 -4.15 3.4e-05 ***

## gcost 0.07461 0.02241 3.33 0.00087 ***

## tau 0.46669 0.14599 3.20 0.00139 **

## het.income 0.00583 0.00339 1.72 0.08521 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -178

## Number of observations: 210

## Number of iterations: 75

## Exit of MLE: successful convergence

## Simulation based on 30 draws

The results are very similar to those of the previous example. All the parameters for the vari-
ables that enter in the scale are preceded by the string het. Thus, the coefficient het.income
corresponds to δincome.
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Suppose now that we want to test the null hypothesis H0 : δincome = 0. This test can
be performed using the function waldtest or lrtest from the package lmtest (Zeileis and
Hothorn 2002):

library("lmtest")

waldtest(smnl.nh, smnl.het)

## Wald test

##

## Model 1: choice ~ wait + vcost + travel + gcost | 1

## Model 2: choice ~ wait + vcost + travel + gcost | 1 | 0 | 0 | income -

## 1

## Res.Df Df Chisq Pr(>Chisq)

## 1 202

## 2 201 1 2.96 0.085 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lrtest(smnl.nh, smnl.het)

## Likelihood ratio test

##

## Model 1: choice ~ wait + vcost + travel + gcost | 1

## Model 2: choice ~ wait + vcost + travel + gcost | 1 | 0 | 0 | income -

## 1

## #Df LogLik Df Chisq Pr(>Chisq)

## 1 8 -180

## 2 9 -178 1 3.81 0.051 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

3.5. Estimating MIXL models

In the following examples we show how to estimate MIXL models using gmnl. The package
mlogit is very efficient in estimating MIXL models. However, one advantage of using gmnl is
the inclusion of individual-specific variables to explain the mean of the random parameters
(see Equation 2). Other important expansions include the possibility of producing point and
interval estimates at the individual level, and the consideration of Johnson Sb heterogeneity
distributions.

If we assume that the coefficients of travel and wait vary across individuals according to:

βtravel,i = β1 + π11income + π12size + σ1η1i

βwait,i = β2 + π21income + σ2η2i,
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where η1i is triangular and η2i ∼ N(0, 1), the corresponding MIXL model is estimated by
typing:

mixl.hier <- gmnl(choice ~ vcost + gcost + travel + wait | 1 |

0 | income + size - 1,

data = TM,

model = "mixl",

ranp = c(travel = "t", wait = "n"),

mvar = list(travel = c("income","size"),

wait = c("income")),

R = 50,

haltons = list("primes"= c(2, 17),

"drop" = rep(19, 2)))

## Estimating MIXL model

The argument model = "mixl" indicates that the MIXL model will be estimated. The dis-
tribution of the random coefficients are specified by the argument ranp (See Table 3 for
shorthands of other continuous distributions allowed by gmnl). Note also that the fourth part
of the formula is reserved for all the variables that enter the mean of the random parame-
ters. The argument mvar indicates which variables enter each specific random parameter. For
example travel = c("income","size") indicates that the mean of the travel coefficient
varies according to income and size. Finally, haltons indicates the prime numbers used for
the Halton draws and how many elements to drop for each random parameter.

summary(mixl.hier)

##

## Model estimated on: Thu Jun 04 13:15:40 2015

##

## Call:

## gmnl(formula = choice ~ vcost + gcost + travel + wait | 1 | 0 |

## income + size - 1, data = TM, model = "mixl", ranp = c(travel = "t",

## wait = "n"), R = 50, haltons = list(primes = c(2, 17), drop = rep(19,

## 2)), mvar = list(travel = c("income", "size"), wait = c("income")),

## method = "bfgs")

##

## Frequencies of categories:

##

## air train bus car

## 0.276 0.300 0.143 0.281

##

## The estimation took: 0h:0m:40s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)
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## train:(intercept) -3.15e-01 1.04e+00 -0.30 0.76224

## bus:(intercept) -1.10e+00 1.10e+00 -1.01 0.31471

## car:(intercept) -7.97e+00 2.06e+00 -3.86 0.00011 ***

## vcost -5.10e-02 4.58e-02 -1.11 0.26566

## gcost 2.82e-02 4.51e-02 0.62 0.53293

## travel -9.67e-03 5.21e-03 -1.86 0.06357 .

## wait -1.33e-01 3.93e-02 -3.39 0.00070 ***

## travel.income -1.28e-04 5.63e-05 -2.27 0.02302 *

## travel.size 2.22e-03 1.27e-03 1.74 0.08140 .

## wait.income -1.12e-03 5.53e-04 -2.02 0.04385 *

## sd.travel 2.41e-03 6.07e-03 0.40 0.69098

## sd.wait 6.95e-02 2.77e-02 2.51 0.01216 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -164

## Number of observations: 210

## Number of iterations: 163

## Exit of MLE: successful convergence

## Simulation based on 50 draws

The output shows the estimates in the following order: fixed parameters, mean of the ran-
dom parameters, effect of the variables that affect the mean of the random parameters, and
finally the standard deviation/spread of the random parameters. Note that travel.income

corresponds to π11, travel.size corresponds to π12, and wait.income corresponds to π21.

We now estimate a correlated random parameter model using the Electricity data from the
mlogit package, which is a panel dataset. Given time compilation restrictions, in this example
we will use just a subsample of this database (subset = 1:3000). The user may want to use
the whole sample to reproduce this case study.

data("Electricity", package = "mlogit")

Electr <- mlogit.data(Electricity, id.var = "id", choice = "choice",

varying = 3:26, shape = "wide", sep = "")

In this example, two arguments are especially relevant in the gmnl function. First, panel =

TRUE indicates that the data is a panel. When using panel data the user needs to specify a
variable in the id.var argument of the mlogit.data function. Second, to estimate correlated
random parameters correlation = TRUE needs to be indicated in the gmnl function. The
syntax is the following:

Elec.cor <- gmnl(choice ~ pf + cl + loc + wk + tod + seas| 0,

data = Electr,

subset = 1:3000,

model = 'mixl',
R = 50,
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panel = TRUE,

ranp = c(cl = "n", loc = "n", wk = "n",

tod = "n", seas = "n"),

correlation = TRUE)

## Estimating MIXL model

summary(Elec.cor)

##

## Model estimated on: Thu Jun 04 13:15:54 2015

##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0,

## data = Electr, subset = 1:3000, model = "mixl", ranp = c(cl = "n",

## loc = "n", wk = "n", tod = "n", seas = "n"), R = 50,

## correlation = TRUE, panel = TRUE, method = "bfgs")

##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:15s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## pf -0.8702 0.0786 -11.07 < 2e-16 ***

## cl -0.1765 0.0430 -4.11 4.0e-05 ***

## loc 2.3822 0.3053 7.80 6.0e-15 ***

## wk 1.9447 0.2493 7.80 6.2e-15 ***

## tod -8.5026 0.7423 -11.45 < 2e-16 ***

## seas -8.6456 0.7803 -11.08 < 2e-16 ***

## sd.cl.cl 0.3919 0.0420 9.33 < 2e-16 ***

## sd.cl.loc 0.4921 0.1983 2.48 0.01311 *

## sd.cl.wk 0.5514 0.2131 2.59 0.00966 **

## sd.cl.tod -0.9834 0.2802 -3.51 0.00045 ***

## sd.cl.seas -0.1470 0.2297 -0.64 0.52206

## sd.loc.loc 2.5925 0.4226 6.14 8.5e-10 ***

## sd.loc.wk 1.9311 0.3610 5.35 8.8e-08 ***

## sd.loc.tod 1.0198 0.5651 1.80 0.07114 .

## sd.loc.seas 0.0941 0.4579 0.21 0.83723

## sd.wk.wk -0.3330 0.2212 -1.51 0.13226

## sd.wk.tod 1.9341 0.3208 6.03 1.7e-09 ***

## sd.wk.seas 0.7349 0.3030 2.43 0.01529 *

## sd.tod.tod 2.0635 0.3301 6.25 4.1e-10 ***
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## sd.tod.seas 1.1689 0.2539 4.60 4.2e-06 ***

## sd.seas.seas 1.7034 0.2533 6.72 1.8e-11 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -692

## Number of observations: 750

## Number of iterations: 97

## Exit of MLE: successful convergence

## Simulation based on 50 draws

The estimates from sd.cl.cl to sd.seas.seas are the elements of the lower triangular matrix
L. If the user is interested in the standard errors of the variance-covariance matrix of the
random parameters LL> = Σ or the standard deviations, the S3 function vcov can be used
for finding these elements. The syntax for both cases is the following:4

vcov(Elec.cor, what = 'ranp', type = 'cov', se = 'true')

##

## Elements of the variance-covariance matrix

##

## Estimate Std. Error t-value Pr(>|t|)

## v.cl.cl 0.1536 0.0329 4.67 3.1e-06 ***

## v.cl.loc 0.1928 0.0816 2.36 0.0181 *

## v.cl.wk 0.2161 0.0917 2.36 0.0185 *

## v.cl.tod -0.3854 0.1290 -2.99 0.0028 **

## v.cl.seas -0.0576 0.0906 -0.64 0.5249

## v.loc.loc 6.9630 2.2065 3.16 0.0016 **

## v.loc.wk 5.2776 1.6637 3.17 0.0015 **

## v.loc.tod 2.1599 1.3323 1.62 0.1050

## v.loc.seas 0.1715 1.1222 0.15 0.8785

## v.wk.wk 4.1440 1.3293 3.12 0.0018 **

## v.wk.tod 0.7832 0.8530 0.92 0.3585

## v.wk.seas -0.1441 0.7525 -0.19 0.8481

## v.tod.tod 10.0058 3.4763 2.88 0.0040 **

## v.tod.seas 4.0739 1.5217 2.68 0.0074 **

## v.seas.seas 4.8384 1.1851 4.08 4.5e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vcov(Elec.cor, what = 'ranp', type = 'sd', se = 'true')

##

4To compute the standard errors, gmnl uses the deltamethod function from the msm package (Jackson
2011).
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## Standard deviations of the random parameters

##

## Estimate Std. Error t-value Pr(>|t|)

## cl 0.392 0.042 9.33 < 2e-16 ***

## loc 2.639 0.418 6.31 2.8e-10 ***

## wk 2.036 0.327 6.23 4.5e-10 ***

## tod 3.163 0.549 5.76 8.6e-09 ***

## seas 2.200 0.269 8.17 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The correlation matrix of the random parameters can be recovered using the following syntax:

vcov(Elec.cor, what = 'ranp', type = 'cor')

## cl loc wk tod seas

## cl 1.0000 0.1865 0.2708 -0.311 -0.0668

## loc 0.1865 1.0000 0.9825 0.259 0.0295

## wk 0.2708 0.9825 1.0000 0.122 -0.0322

## tod -0.3109 0.2588 0.1216 1.000 0.5855

## seas -0.0668 0.0295 -0.0322 0.586 1.0000

3.6. Estimating G-MNL models

In the following examples we show how to estimate G-MNL models in gmnl. We will assume
that the ASCs are random. Using the formula to create the ASCs produces problems in the
ranp argument due to the way the constants are labeled. So, we first create the ASCs by
hand :

Electr$asc2 <- as.numeric(Electr$alt == 2)

Electr$asc3 <- as.numeric(Electr$alt == 3)

Electr$asc4 <- as.numeric(Electr$alt == 4)

The G-MNL model is estimated using model = "gmnl":

Elec.gmnl <- gmnl(choice ~ pf + cl + loc + wk + tod + seas +

asc2 + asc3 + asc4 | 0,

data = Electr,

subset = 1:3000,

model = 'gmnl',
R = 50,

panel = TRUE,

notscale = c(rep(0, 6), 1, 1, 1),

ranp = c(cl = "n", loc = "n", wk = "n",

tod = "n", seas = "n",

asc2 = "n", asc3 = "n", asc4 = "n"))
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##

## The following variables are not scaled:

## [1] "asc2" "asc3" "asc4"

## Estimating GMNL model

summary(Elec.gmnl)

##

## Model estimated on: Thu Jun 04 13:16:22 2015

##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas + asc2 +

## asc3 + asc4 | 0, data = Electr, subset = 1:3000, model = "gmnl",

## ranp = c(cl = "n", loc = "n", wk = "n", tod = "n", seas = "n",

## asc2 = "n", asc3 = "n", asc4 = "n"), R = 50, panel = TRUE,

## notscale = c(rep(0, 6), 1, 1, 1), method = "bfgs")

##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:28s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## pf -0.8733 0.1066 -8.19 2.2e-16 ***

## cl -0.1718 0.0422 -4.07 4.7e-05 ***

## loc 1.8081 0.2289 7.90 2.9e-15 ***

## wk 1.7543 0.2222 7.89 2.9e-15 ***

## tod -8.5960 0.9865 -8.71 < 2e-16 ***

## seas -8.8653 1.0128 -8.75 < 2e-16 ***

## asc2 0.3044 0.1539 1.98 0.0479 *

## asc3 0.1563 0.1598 0.98 0.3279

## asc4 0.1133 0.1568 0.72 0.4698

## sd.cl 0.3643 0.0442 8.25 2.2e-16 ***

## sd.loc 1.1014 0.2738 4.02 5.7e-05 ***

## sd.wk 1.2053 0.2493 4.84 1.3e-06 ***

## sd.tod 1.4655 0.2335 6.28 3.5e-10 ***

## sd.seas 1.8110 0.2958 6.12 9.2e-10 ***

## sd.asc2 0.5264 0.1791 2.94 0.0033 **

## sd.asc3 0.0849 0.2246 0.38 0.7054

## sd.asc4 0.2407 0.1881 1.28 0.2007

## tau 0.6777 0.1490 4.55 5.4e-06 ***

## gamma 0.3625 0.1747 2.08 0.0380 *

## ---
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## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -729

## Number of observations: 750

## Number of iterations: 98

## Exit of MLE: successful convergence

## Simulation based on 50 draws

Since we are including the ASCs as additional variables, the second part of the formula does
not include the ASCs (| 0). Note also that even though the ASCs are random, they are not
scaled: notscale = c(rep(0, 6), 1, 1, 1) indicates that the last three variables in the
first part of the formula (asc2, asc3, and asc4) are not scaled.

Another important issue is that gmnl estimates γ directly by default as suggested by Keane
and Wasi (2013). However, one can estimate γ∗ where γ = exp(γ∗)/(1+exp(γ∗)) as suggested
by Fiebig et al. (2010), by specifying hgamma = "indirect". (Thus, hgamma = "direct" is
the default setting.)

The G-MNL estimation code is also very convenient when one wants to estimate S-MNL
models with random effects (Keane and Wasi 2013). In this case, the user can fix γ and use
model = "gmnl".

Elec.smnl.re <- gmnl(choice ~ pf + cl + loc + wk + tod + seas +

asc2 + asc3 + asc4 | 0,

data = Electr,

subset = 1:3000,

model = 'gmnl',
R = 50,

panel = TRUE,

print.init = TRUE,

notscale = c(rep(0, 6), 1, 1, 1),

ranp = c(asc2 = "n", asc3 = "n", asc4 = "n"),

init.gamma = 0,

fixed = c(rep(FALSE, 16), TRUE),

correlation = TRUE)

##

## The following variables are not scaled:

## [1] "asc2" "asc3" "asc4"

##

## Starting Values:

## pf cl loc wk tod

## -0.6018 -0.1350 1.2223 1.0387 -5.3686

## seas asc2 asc3 asc4 sd.asc2.asc2

## -5.5623 0.2097 0.0811 0.1065 0.1000

## sd.asc2.asc3 sd.asc2.asc4 sd.asc3.asc3 sd.asc3.asc4 sd.asc4.asc4

## 0.1000 0.1000 0.1000 0.1000 0.1000



Mauricio Sarrias, Ricardo Daziano 23

## tau gamma

## 0.1000 0.0000

## Estimating GMNL model

summary(Elec.smnl.re)

##

## Model estimated on: Thu Jun 04 13:16:39 2015

##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas + asc2 +

## asc3 + asc4 | 0, data = Electr, subset = 1:3000, model = "gmnl",

## ranp = c(asc2 = "n", asc3 = "n", asc4 = "n"), R = 50, correlation = TRUE,

## panel = TRUE, init.gamma = 0, notscale = c(rep(0, 6), 1,

## 1, 1), print.init = TRUE, fixed = c(rep(FALSE, 16), TRUE),

## method = "bfgs")

##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:16s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## pf -0.6299 0.1148 -5.49 4.1e-08 ***

## cl -0.1377 0.0328 -4.20 2.7e-05 ***

## loc 1.2749 0.2200 5.80 6.8e-09 ***

## wk 1.1119 0.1929 5.76 8.2e-09 ***

## tod -6.2008 1.0450 -5.93 3.0e-09 ***

## seas -6.3681 1.0802 -5.90 3.7e-09 ***

## asc2 0.2124 0.1442 1.47 0.1409

## asc3 0.2295 0.1351 1.70 0.0894 .

## asc4 0.1536 0.1310 1.17 0.2410

## sd.asc2.asc2 0.5694 0.2184 2.61 0.0091 **

## sd.asc2.asc3 0.3066 0.1813 1.69 0.0908 .

## sd.asc2.asc4 0.1508 0.1995 0.76 0.4497

## sd.asc3.asc3 0.0445 0.2192 0.20 0.8390

## sd.asc3.asc4 0.0893 0.2188 0.41 0.6832

## sd.asc4.asc4 -0.0406 0.2034 -0.20 0.8419

## tau 1.1009 0.1852 5.94 2.8e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation
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## Log Likelihood: -841

## Number of observations: 750

## Number of iterations: 76

## Exit of MLE: successful convergence

## Simulation based on 50 draws

The argument init.gamma indicates the initial value for γ. In this case we set it at zero.
The next step is to set the parameters that are fixed by using the argument fixed, which
is passed to the maxLik function. Note that the user needs to be careful with the order of
the parameters. We encourage the user to estimate first a model where all the parameters
are freely estimated with the argument print.init = TRUE. This argument will display the
initial values and the order used by gmnl. Generally, γ is the last parameter that enters
the likelihood specification. So, by typing fixed = c(rep(FALSE, 16), TRUE) we are only
holding γ fixed at zero, and the rest of the coefficients are freely estimated.

By default, the initial values for the mean of the random parameters come from an MNL, and
the standard deviations or spread are set at 0.1. However, the starting values from an MNL
model may not be the best guess, since the G-MNL model is not globally concave. The best
starting values for a G-MNL model with correlated parameters might be: 1) G-MNL with
uncorrelated parameters, 2) MIXL with correlated parameters, or 3) GMNL with correlated
parameters with γ fixed at 0. One can first get these initial parameters and then use the
start argument of gmnl to indicate the vector of appropriate starting values (see Section 3.8
for an example of how to use the start argument).

3.7. Estimating LC and MM-MNL models

The next example shows how an LC model with two classes can be estimated:

Elec.lc <- gmnl(choice ~ pf + cl + loc + wk + tod + seas| 0 |

0 | 0 | 1,

data = Electr,

subset = 1:3000,

model = 'lc',
panel = TRUE,

Q = 2)

## Estimating LC model

Note that for the LC model, one needs to specify at least a constant in the fifth part of the
formula. If the class assignment wiq is also determined by socio-economic characteristics,
those covariates can also be included in the fifth part. The LC model is estimated by typing
model = "lc", and the prespecified number of classes is indicated with the argument Q.

summary(Elec.lc)

##

## Model estimated on: Thu Jun 04 13:16:39 2015
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##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |

## 0 | 0 | 1, data = Electr, subset = 1:3000, model = "lc",

## Q = 2, panel = TRUE, method = "bfgs")

##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:1s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## class.1.pf -0.4458 0.0876 -5.09 3.6e-07 ***

## class.1.cl -0.1847 0.0301 -6.14 8.3e-10 ***

## class.1.loc 1.2144 0.1618 7.50 6.2e-14 ***

## class.1.wk 0.9641 0.1429 6.75 1.5e-11 ***

## class.1.tod -3.2184 0.6880 -4.68 2.9e-06 ***

## class.1.seas -3.4865 0.6929 -5.03 4.9e-07 ***

## class.2.pf -0.8431 0.0968 -8.71 < 2e-16 ***

## class.2.cl -0.1242 0.0453 -2.74 0.0061 **

## class.2.loc 1.6445 0.2689 6.12 9.6e-10 ***

## class.2.wk 1.4139 0.2120 6.67 2.6e-11 ***

## class.2.tod -9.3732 0.8676 -10.80 < 2e-16 ***

## class.2.seas -9.2647 0.8847 -10.47 < 2e-16 ***

## (class)2 -0.2200 0.0788 -2.79 0.0052 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -793

## Number of observations: 750

## Number of iterations: 77

## Exit of MLE: successful convergence

Finally, the next example estimates an MM-MNL with two mixtures of normal:

Elec.mm <- gmnl(choice ~ pf + cl + loc + wk + tod + seas| 0 | 0 | 0 | 1,

data = Electr,

subset = 1:3000,

model = 'mm',
R = 50,

panel = TRUE,

ranp = c(pf = "n", cl = "n", loc = "n",
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wk = "n", tod = "n", seas = "n"),

Q = 2,

iterlim = 500)

## Estimating MM-MNL model

summary(Elec.mm)

##

## Model estimated on: Thu Jun 04 13:17:22 2015

##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |

## 0 | 0 | 1, data = Electr, subset = 1:3000, model = "mm",

## ranp = c(pf = "n", cl = "n", loc = "n", wk = "n", tod = "n",

## seas = "n"), R = 50, Q = 2, panel = TRUE, iterlim = 500,

## method = "bfgs")

##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:42s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## class.1.pf -1.28047 0.12281 -10.43 < 2e-16 ***

## class.1.cl -0.49715 0.08070 -6.16 7.2e-10 ***

## class.1.loc 0.64457 0.24097 2.67 0.00747 **

## class.1.wk 0.71243 0.21824 3.26 0.00110 **

## class.1.tod -11.62539 1.02751 -11.31 < 2e-16 ***

## class.1.seas -12.65728 1.13964 -11.11 < 2e-16 ***

## class.2.pf -0.43574 0.11588 -3.76 0.00017 ***

## class.2.cl 0.08464 0.08288 1.02 0.30714

## class.2.loc 3.38622 0.38187 8.87 < 2e-16 ***

## class.2.wk 2.72092 0.32689 8.32 < 2e-16 ***

## class.2.tod -4.71641 1.05415 -4.47 7.7e-06 ***

## class.2.seas -4.64754 0.96000 -4.84 1.3e-06 ***

## class.1.sd.pf 0.10535 0.03941 2.67 0.00750 **

## class.1.sd.cl 0.26899 0.05833 4.61 4.0e-06 ***

## class.1.sd.loc 0.00759 0.26552 0.03 0.97718

## class.1.sd.wk 0.11417 0.58066 0.20 0.84413

## class.1.sd.tod 2.20521 0.45035 4.90 9.8e-07 ***

## class.1.sd.seas 2.32199 0.45198 5.14 2.8e-07 ***

## class.2.sd.pf 0.19696 0.03372 5.84 5.2e-09 ***
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## class.2.sd.cl 0.35530 0.07492 4.74 2.1e-06 ***

## class.2.sd.loc 0.58709 0.28699 2.05 0.04079 *

## class.2.sd.wk 1.10037 0.30323 3.63 0.00028 ***

## class.2.sd.tod 1.40252 0.51868 2.70 0.00685 **

## class.2.sd.seas 0.07311 0.25655 0.28 0.77565

## (class)2 -0.13719 0.07844 -1.75 0.08028 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -672

## Number of observations: 750

## Number of iterations: 125

## Exit of MLE: successful convergence

## Simulation based on 50 draws

The specification is similar to that of the LC model, but we now allow the parameters in each
class to be normally distributed using the argument ranp. It is worth mentioning that the
number of iterations required for this model is greater than that for previous models. For
that reason we have set the maximum of iterations at 500 using the argument iterlim.

3.8. Willingness-to-pay space

Willingness-to-pay space models reparameterize the parameter space in such a way that the
marginal WTP for each attribute is directly estimated rather than the marginal utility (prefer-
ence parameters). Train and Weeks (2005) and Sonnier, Ainslie, and Otter (2007) extend the
WTP-space approach by allowing random parameters (and, consequently, random willingness-
to-pay measures). The WTP-space approach is very appealing because it allows the analyst
to estimate the WTP heterogeneity distribution directly (Scarpa, Thiene, and Train 2008).

To illustrate the concept of WTP space, and how it can be estimated using gmnl, we will first
show the case without random parameters. The standard procedure to derive willingness-to-
pay measures is to start with a model in preference space. For example, consider the simple
conditional logit model,

clogit <- gmnl(choice ~ pf + cl + loc + wk + tod + seas| 0,

data = Electr,

subset = 1:3000)

summary(clogit)

##

## Model estimated on: Thu Jun 04 13:17:22 2015

##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0,

## data = Electr, subset = 1:3000, method = "nr")
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##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:0s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## pf -0.6113 0.0548 -11.15 < 2e-16 ***

## cl -0.1398 0.0204 -6.85 7.2e-12 ***

## loc 1.1986 0.1197 10.01 < 2e-16 ***

## wk 1.0304 0.1063 9.69 < 2e-16 ***

## tod -5.4540 0.4341 -12.56 < 2e-16 ***

## seas -5.6648 0.4419 -12.82 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by Newton-Raphson maximisation

## Log Likelihood: -870

## Number of observations: 750

## Number of iterations: 4

## Exit of MLE: gradient close to zero

To estimate the willingness to pay for each attribute, one needs to divide each attribute
parameter by that of price pf. This ratio can be easily retrieved using the function wtp.gmnl:

wtp.gmnl(clogit, wrt = "pf")

##

## Willigness-to-pay respect to: pf

##

## Estimate Std. Error t-value Pr(>|t|)

## cl 0.2287 0.0358 6.38 1.8e-10 ***

## loc -1.9610 0.2304 -8.51 < 2e-16 ***

## wk -1.6858 0.1949 -8.65 < 2e-16 ***

## tod 8.9226 0.2025 44.07 < 2e-16 ***

## seas 9.2675 0.2164 42.83 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The argument wrt = "pf" indicates that all the parameters should be divided by the param-
eter of the attribute pf.

Another way to estimate the same WTP coefficients is to use the S-MNL model. We need
first to compute the negative of the price coefficient using the mlogit.data function:
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ElectrO <- mlogit.data(Electricity, id = "id", choice = "choice",

varying = 3:26, shape = "wide", sep = "",

opposite = c("pf"))

Next, we need to set the values for the price parameter and τ at 1 and 0, respectively. The
fixed argument is used to set these values.

start <- c(1, 0, 0, 0, 0, 0, 0, 0)

wtps <- gmnl(choice ~ pf + cl + loc + wk + tod + seas|0 | 0 | 0 | 1,

data = ElectrO,

model = "smnl",

subset = 1:3000,

R = 1,

fixed = c(TRUE, FALSE, FALSE, FALSE, FALSE,

FALSE, TRUE, FALSE),

panel = TRUE,

start = start,

method = "bhhh",

iterlim = 500)

## Estimating SMNL model

Note also that we fitted the S-MNL model with a constant in the scale. This constant, after a
proper transformation, will represent the price parameter. Since we are working with a fixed
parameter model, the number of draws is set equal to 1.

summary(wtps)

##

## Model estimated on: Thu Jun 04 13:17:23 2015

##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |

## 0 | 0 | 1, data = ElectrO, subset = 1:3000, model = "smnl",

## start = start, R = 1, panel = TRUE, fixed = c(TRUE, FALSE,

## FALSE, FALSE, FALSE, FALSE, TRUE, FALSE), method = "bhhh",

## iterlim = 500)

##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:1s

##

## Coefficients:
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## Estimate Std. Error z-value Pr(>|z|)

## cl -0.2287 0.0361 -6.34 2.4e-10 ***

## loc 1.9610 0.2284 8.59 < 2e-16 ***

## wk 1.6858 0.1915 8.80 < 2e-16 ***

## tod -8.9226 0.2025 -44.06 < 2e-16 ***

## seas -9.2675 0.2166 -42.79 < 2e-16 ***

## het.(Intercept) -0.4922 0.0917 -5.37 7.9e-08 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BHHH maximisation

## Log Likelihood: -870

## Number of observations: 750

## Number of iterations: 16

## Exit of MLE: successive function values within tolerance limit

## Simulation based on 1 draws

Each value in the output represents the WTP estimates for each respective attribute. Note
that these WTP estimates are the same as those obtained using the wtp.gmnl function. The
price coefficient can be obtained using the following transformation:

- exp(coef(wtps)["het.(Intercept)"])

## het.(Intercept)

## -0.611

If one requires the standard error for the price coefficient the deltamethod function from the
msm (Jackson 2011) package can be used in the following way:

library("msm")

estmean <- coef(wtps)

estvar <- vcov(wtps)

se <- deltamethod(~ - exp(x6), estmean, estvar, ses = TRUE)

se

## [1] 0.056

Using the same idea, one can let the WTP to vary across individuals. To do so, we can
estimate a G-MNL where the parameter of price and γ are fixed as in the previous example:

start2 <- c(1, coef(wtps), rep(0.1, 5), 0.1, 0)

wtps2 <- gmnl(choice ~ pf + cl + loc + wk + tod + seas|0 | 0 | 0 | 1,

data = ElectrO,

subset = 1:3000,

model = "gmnl",

R = 50,
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fixed = c(TRUE, rep(FALSE, 12), TRUE),

panel = TRUE,

start = start2,

ranp = c(cl = "n", loc = "n", wk = "n", tod = "n", seas = "n"))

## Estimating GMNL model

summary(wtps2)

##

## Model estimated on: Thu Jun 04 13:17:54 2015

##

## Call:

## gmnl(formula = choice ~ pf + cl + loc + wk + tod + seas | 0 |

## 0 | 0 | 1, data = ElectrO, subset = 1:3000, model = "gmnl",

## start = start2, ranp = c(cl = "n", loc = "n", wk = "n", tod = "n",

## seas = "n"), R = 50, panel = TRUE, fixed = c(TRUE, rep(FALSE,

## 12), TRUE), method = "bfgs")

##

## Frequencies of categories:

##

## 1 2 3 4

## 0.215 0.303 0.217 0.265

##

## The estimation took: 0h:0m:31s

##

## Coefficients:

## Estimate Std. Error z-value Pr(>|z|)

## cl -0.2728 0.0518 -5.26 1.4e-07 ***

## loc 2.1631 0.2452 8.82 < 2e-16 ***

## wk 1.9424 0.1935 10.04 < 2e-16 ***

## tod -9.6782 0.2933 -32.99 < 2e-16 ***

## seas -9.8865 0.2772 -35.67 < 2e-16 ***

## het.(Intercept) 0.1142 0.1400 0.82 0.41

## sd.cl 0.4115 0.0520 7.91 2.7e-15 ***

## sd.loc 1.7849 0.2515 7.10 1.3e-12 ***

## sd.wk 1.2865 0.2212 5.81 6.1e-09 ***

## sd.tod 1.7174 0.2478 6.93 4.2e-12 ***

## sd.seas 2.2144 0.3722 5.95 2.7e-09 ***

## tau 0.6904 0.1394 4.95 7.3e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Optimization of log-likelihood by BFGS maximisation

## Log Likelihood: -737

## Number of observations: 750
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## Number of iterations: 122

## Exit of MLE: successful convergence

## Simulation based on 50 draws

3.9. Individual parameters

Similarly to the Rchoice package (Sarrias 2015), gmnl also allows the analyst to get the
conditional estimates for each individual in the sample (see for example Train 2009; Greene
2012). Using Bayes’ theorem we obtain

f(βi|yi,Xi,θ) =
f(yi|Xi,βi)g(βi|θ)∫

βi
f(yi|Xi,βi)g(βi|θ)dβi

,

where f(βi|yi,Xi,θ) is the distribution of the individual parameters βi conditional on the
observed sequence of choices, and g(βi|θ) is the unconditional distribution. The conditional
expectation of βi is thus given by:

E [βi|yi,Xi,θ] =

∫
βi

βif(yi|Xi,βi)g(βi|θ)∫
βi
f(yi|Xi,βi)g(βi|θ)dβi

. (5)

The expectation in Equation 5 gives us the conditional mean of the distribution of the random
parameters, which can also be interpreted as the posterior distribution of the individual
parameters. Simulators for this conditional expectation are presented below, for both the
continuous and discrete cases:

̂̄βi = Ê [βi|yi,Xi,θ] =
1
R

∑R
r=1 β̂ir

∏
t f(yit|xit, β̂ir, θ̂)

1
R

∑R
r=1

∏
t f(yit|xit, β̂ir, θ̂)

̂̄βi = Ê [βi|yi,Xi,θq] =

∑Q
q=1 β̂qŵiq

∏
t f(yit|xit, β̂ir, θ̂q)∑Q

q=1

∏
t f(yit|xit, β̂q, θ̂q)

In order to construct the confidence interval for ̂̄βi, we can derive an estimator of the condi-
tional variance from the point estimates as follows (Greene 2012, chap. 15):

V̂i = Ê
[
β2
i |yi,Xi,θ

]
− Ê [βi|yi,Xi,θ]2 .

An approximate normal-based 95% confidence interval can be then constructed as ̂̄βi±1.96×
V̂

1/2
i .

The gmnl package uses these formulae to compute the individual parameters along with their
95% confidence interval. As an illustration, we can plot the kernel density of the individuals’
conditional mean for the loc parameter using Elec.cor model by typing the following:

plot(Elec.cor, par = "loc", effect = "ce", type = "density",

col = "grey")
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Figure 1 displays the distribution of the individuals’ conditional mean for the parameter of
loc. The gray area gives us the proportion of individuals with a positive conditional mean.

The 95% confidence interval of the conditional mean for the first 30 individuals is shown in
Figure 2, which was plotted using the following syntax:5

plot(Elec.cor, par = "loc", effect = "ce", ind = TRUE, id = 1:30)

Another important function in gmnl is effect.gmnl. This function allows the users to get the
individuals’ conditional mean of both the preference parameters and the willingness-to-pay
measures. For example, one can plot the individual conditional mean and standard errors
(Figure 2) by typing:

bi.loc <- effect.gmnl(Elec.cor, par = "loc", effect = "ce")

summary(bi.loc$mean)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.79 0.42 2.04 2.12 3.46 7.13

summary(bi.loc$sd.est)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.113 0.564 0.795 0.866 1.130 1.860

The conditional mean of the willingness to pay for “loc” (wtp = βi,loc/βpf ) for all individuals
in the sample can be obtained using:

wtp.loc <- effect.gmnl(Elec.cor, par = "loc", effect = "wtp", wrt = "pf")

Note that the argument par is the variable whose parameter goes in the numerator, and the
argument wrt is a string indicating which parameter goes in the denominator.

summary(wtp.loc$mean)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -8.19 -3.98 -2.35 -2.44 -0.48 0.91

summary(wtp.loc$sd.est)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.130 0.648 0.914 0.996 1.300 2.130

4. Conclusions

5gmnl uses plotrix package (Lemon 2006) to create the confidence interval graph.
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The package gmnl implements the maximum likelihood estimator of random parameter logit
models with heterogeneity distributions that can be continuous, discrete, or discrete-continuous
mixtures. In this paper we have shown how gmnl can fit several extensions to the standard
multinomial logit model, including the recently derived mixed-mixed multinomial logit (MM-
MNL). To our knowledge there is no other widely available statistical package that has imple-
mented the maximum simulated likelihood estimator of MM-MNL, and we want to highlight
that gmnl makes use of analytical expressions of the gradient. gmnl is also the first imple-
mentation in R of the estimator of the scale heterogeneity multinomial logit (S-MNL), the
generalized multinomial logit (G-MNL), and the latent class logit (LC). Whereas there are
other packages in R for the estimation of MIXL, gmnl allows for the inclusion of individual-
specific variables to explain the mean of the random parameters for a mixture of deterministic
taste variations and unobserved preference heterogeneity. In addition, gmnl also implements
Johnson Sb heterogeneity distributions.

Another key post-estimation functionality of gmnl that we have illustrated in this paper is
the derivation of conditional point and interval estimates of either the random parameters
or willingness-to-pay measures at the individual level. Random parameter models can be
used to make inference on the preference parameters of each individual in the sample, but
most packages that estimate MIXL models lack a command to produce individual-level esti-
mates. gmnl is able to compute individual parameters for all generalized logit models that
are implemented in the package, including G-MNL, MIXL, and LC.

Additional functionalities that we expect to incorporate in the future are the consideration of
different choice sets for each individual and the implementation of different methods for the
construction of confidence intervals of willingness-to-pay measures.
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Figure 1: Kernel density of the individuals’ conditional mean.
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Figure 2: 95% confident interval for the conditional means.
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